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A INTRODUCTION

This Datareview gives values for the second and third order elastic constants, Sections B and C, the
compliances, Section D, the bulk modulus, Section E, and the average elastic moduli in the isotropic
approximation, Section F. Finally, in Section G, the dependence of the elastic constants on doping
level is summarised.

B SECOND ORDER ELASTIC CONSTANTS

The second order elastic constants or stiffness, as defined by Kittel [1] or Hirth and Lothe [2] relate
stresses a to elastic strains s, according to Hooke's law. In cubic crystals, three constants Cn, Ci2 and
C44 are sufficient to determine all stress components whatever the state of strain:

Gii = Cn Eu + Ci2 (6jj + Skk)
G1J = IC44S1J ( i * j )

The Sy are usually measured by ultrasonic methods. A discussion of current techniques and of
theoretical calculations in semiconductors was given by Chen et al [3].

Early data for pure Si were reported by McSkimin and co-workers [4-6]. At room temperature, and
atmospheric pressure, the most accurate data seem to be those of Hall [7].

Cn = 1.6564 x 1011Pa
Ci2 = 0.6394 x 1011Pa
C44 = 0.7951 x 1011Pa

The error in Cy is 0.02%. The values of McSkimin are within 0.1% of Hall's values.

The temperature dependence of Qj was investigated by McSkimin [4] in the range 77-300 K, by Hall
[7] in the range 4.2-310 K and by Burenkov and Nikanorov [8] up to 1273 K, but apparently with a
lesser accuracy. (Their Cn and Ci2 at 293 K are about 5% lower than Hall's values, while their C44

agrees with Hall's within 1%).

Below 100 K, the Qj change very little and the extrapolated values at 0 K used in more recent
textbooks [3,9] are:

Cn = 1.6772 x 1011Pa
Ci2 = 0.6498 x 1011Pa
C44 = 0.8036 x 1011Pa

which are 0.1% higher than the data measured by Hall [7] at 4.2 K.

Between 150 and 1000 K the decrease of the Qj with increasing temperature is fairly linear. The
measured rates are:



Rates given in [9] were extracted from the Cy(T) data of Hall [7], which cover a limited temperature
range compared to that of Burenkov and Nikanorov [8].

C THIRD ORDER ELASTIC CONSTANTS

Measurements of the Cy as functions of applied hydrostatic pressure up to 8 GPa [5,10] show that they
are not constant beyond stresses of some hundreds of MPa. Non-linearity effects must be described in
terms of higher order elastic constants. The conventional description is due to Thurston and Brugger
[11] who used the Lagrangian form of elastic tensors. A summary of elastic theories was given by
Nielsen [12].

Cubic crystals have six third-order elastic constants Qjk, which are measured by monitoring the
ultrasonic velocities as a function of external static pressure (hydrostatic or uniaxial). Such
measurements were performed by McSkimin and Andreatch [6] and by Hall [7]. The data of Hall for
pure Si at 298 K are:

The two sets of data [6,7] agree within the estimated error bars, except for |Cm| found to be 4%
higher by McSkimin.

D COMPLIANCES

The compliances express elastic strains as functions of stresses [1,2]. Using the notations of Hirth and
Lothe [2], the compliances are noted Sfy and are given by the relations:



(These quantities are noted Sy by Kittel [I].)

Using the Cu of Hall [7] we obtain for pure Si:

S1H = 0.7691 x 1011 Pa
S1J2 = -0.2142 x 1011Pa

Sf
44= 1.2577 x 1011Pa

at 298 K, and atmospheric pressure, with an error of 0.02%.

E BULKMODULUS
The bulk modulus B is defined as B = -V(dP/dV) where V is the volume and P the hydrostatic
pressure.

The compressibility K is defined as K = 1/B.

In cubic crystals, B is given by the following linear combination of elastic constants:

B = C n +2C12

3

Using the Cy measured by Hall [7] we obtain at 298 K and atmospheric pressure:

B = 0.9784 x 1011Pa
K-1.0221 x 10"11Pa"1

(The error in B, K is 0.02%.)

When non-linear effects become noticeable, the bulk modulus changes with pressure as

B(P) = B(O)-B1P

where the dimensionless B' = -(dB/dP) is expressed in terms of third-order elastic constants as:

B'=-(C111+ 6 C112+ 2 C123)/9B

in the framework of Lagrangian elastic theory. With Hall's values for the C^, we obtain:



B' = 4.11

at 298 K, and atmospheric pressure. The error in B' is about 2%.

F AVERAGE ELASTIC MODULI IN THE ISOTROPIC APPROXIMATION

Silicon is not elastically isotropic. The anisotropy of cubic solids is conveniently characterised by the
anisotropy ratio, A = 2 C44/ (Cn - C^) and the anisotropy factor, H = 2 C44 + Ci2 - Cn.

In pure Si, at ambient temperature and pressure:

A = 1.56
H = 5.74 x 1O11Pa

In view of the difficulties of exact calculations in anisotropic media, one is often satisfied with the
isotropic approximation. In isotropic solids, two quantities are sufficient to relate stresses and strains.
General use is made of the shear modulus n, such as Gy = 2 |u ey, and of the Poisson's ratio v, the ratio
of transverse contraction to elongation in simple tension. Also commonly used is the Young's
modulus, E, the ratio of simple tensile stress to strain.

There are two ways to define these average quantities in real solids. The Voigt average is over the
elastic constants Cy and is appropriate for a polycrystalline material in which the grains of different
orientations have the same stress. The Voigt average is also better to deal with local strains around
dislocations. In contrast, the Reuss average is over the compliances S'y and is better when the grains
have the same state of strain or in cases involving long-range internal stress-fields.

In cubic crystals, average moduli are defined as follows:

Voigt average

shear modulus

Poisson's ratio

Young's modulus

Reuss average

shear modulus

Poisson's ratio

Young's modulus



with j = S ' n - S ' l 2 - ^ -

Using the Qj of Hall [7] we obtain, for pure Si at ambient temperature and pressure:

H = 6.80 x 1011Pa
v = 0.218
E =16.56 x 1011Pa
^R = 6.49 x 1011Pa
vR = 0.228
ER= 15.94 x 1011Pa

G DOPING DEPENDENCE OF ELASTIC CONSTANTS

As explained by Keyes [13], the elastic properties of semiconductors depend on the carrier
concentration, so that the elastic constants are expected to change significantly with electronic
doping.

Second-order elastic constants were measured in heavily doped n-type Si by Hall [7], for a carrier
concentration n = 2.0 x 1019 cm"3 (phosphorus) in the range 4.2-310 K, and by Beilin et al [14] for
n = 4.8 x 1019 cm"3 (arsenic) at 78 and 295 K. Hall also measured the Qjk. Heavily doped p-type Si
was investigated by Mason and Bateman [15] for various concentrations from 5 x 1017 to 3 x 1019CnT3

(boron and gallium). Theoretical approaches were given by Keyes [13], Kim [16] and Khan and Allen
[17] (see also [3]). The typical effect of heavy doping is to decrease the Cy by 1-3% and to modify the
temperature dependences. The Qjk can be changed in much larger proportions.

H CONCLUSION

Second order elastic constants, or stiffness, relate stresses to strains and this Datareview has
summarised their values and variation with temperature. Third order elastic constants are required to
describe the pressure dependence, above a few hundred MPa. Values are also given for the
compliances, at ambient temperature and pressure, and the bulk modulus, at ambient temperature and
pressure and at higher pressure. Silicon is not elastically isotropic and an approximation is needed, via
the Voigt and Reuss averages, using the shear modulus, Poisson's ratio and Young's modulus. Elastic
constants change markedly on doping with P, As, B and Ga.
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